Response of pulses to seed or soil application of rhizobial inoculants, Martyniuk S., Kozieł M., Gałązka A., Ecological Chemistry and Engineering S, 2018; 25(2): 323-329.
Nowa publikacja w Ecological Chemistry and Engineering S.

Zakład Mikrobiologii IUNG-PIB Puławy

Response of pulses to seed or soil application of rhizobial inoculants, Martyniuk S., Kozieł M., Gałązka A., Ecological Chemistry and Engineering S, 2018; 25(2): 323-329.

Biochemiczne metody oceny różnorodności funkcjonalnej i strukturalnej mikroorganizmów glebowych, Furtak K., Gajda A.M., Postępy Mikrobiologii; 2018, 57, 2, s.194-202.
Link do publikacji: ![]()
Streszczenie:
Mikrobiom glebowy składa się z wysoce zróżnicowanych pod względem strukturalnym oraz funkcjonalnym grup mikroorganizmów. Stanowi on obiekt licznych badań od wielu lat, jednakże wciąż pozostaje nie do końca poznany. Wiadome jest, że mikroorganizmy glebowe odgrywają główną rolę w procesach biogeochemicznych. Znajomość ich różnorodności strukturalnej i funkcjonalnej pozwala zatem na ocenę stanu środowiska glebowego, co jest niezwykle istotne dla agronomii oraz ekologii. Działalność rolnicza oraz premysłowa człowieka powoduje zmiany w aktywności gleby, które należy monitorować. W badaniach nad aktywnością i różnorodnością mikrobiologiczną gleby można wyróżnić wiele metod badawczych opracowywanych i udoskonalanych przez naukowców z całego świata. Metody biochemiczne stosowane w celu analizy aktywności mikrobiologicznej polegają na określeniu zdolności mikroorganizmów do syntezy, asymilacji bądź rozkładu określonych związków chemicznych, a także na analizie komponentów komórek drobnoustrojów. Omówiono w niniejszej pracy metody badawcze, które umożliwiają analizę zarówno funkcjonalności mikroorganizmów, jak i ich strukturalnego zróżnicowania.
Abstract:
Soil microbiome is composed of groups of microorganisms which are structurally and functionally very different. For many years soil microbiome has been the subject of numerous studies, but still is not fully recognized. It is well known that soil microorganisms play a key role in biogeochemical processes. Knowledge of their structural and functional diversity makes it possible to assess the condition of the soil environment, which is extremely important for agronomy and ecology. The agricultural and industrial activities of humans cause changes in soil activity, which should be monitored. There are many different research methods developed to analyze soil activity and microbiological soil diversity and refined by researchers from around the world in. Biochemical methods used to analyze microbial activity are based on the determination of the ability of microorganisms to synthesize, assimilate or decompose specific chemical compounds, as well as on the analysis of microbial cell components. This study presents the research methods used for the analysis of both: the functionality of microorganisms and their structural diversity

Abramczyk B.A., Król E.D., Zalewska E.D., Zimowska B., Morphological characteristics and pathogenicity of Diaporthe eres isolates to the fruit tree shoots, Acta Sci. Pol. Hortorum Cultus, 2018, 125-133, DOI: 10.24326/asphc.2018.6.13.
Abstrakt:
This work is a continuation of research on Diaporthe genus isolates obtained in 2010-2012 from fruit trees
in Poland, which on the basis of previously conducted molecular tests, have been identified as one species
belonging to the Diaporthe eres species complex. The aim of this study was to determine the morphology
and pathogenic abilities of tested Diaporthe eres isolates. The experiment included cross tests, in which the
shoots of apple, pear, cherry and plum trees were inoculated with each of the 4 isolates derived from each
mentioned host plants. As a result of experiment, the pathogenic nature of D. eres in relation to the shoots
of fruit trees, was confirmed. The isolates were also characterized on the basis of the colony appearance and
spore dimensions. Morphological features of studied D. eres cultures were very similar, regardless of the
isolate and the host plant, from which they were obtained. All tested isolates formed alpha and beta conidia
having the same range size.

Microbial Diversity of Paulownia spp. Leaves – A New Source of Green Manure, Woźniak M., Gałązka A., Grządziel J., Frąc M.; BioResources, 2018
Abstract

Long term insight into biodiversity of a smelter wasteland reclaimed with biosolids and by-product lime, Siebielec S., Siebielec G., Stuczyński T., Sugier P., Grzeda E., Grządziel J.; Science of The Total Environment, 2018, doi.org/10.1016/j.scitotenv.2018.04.372
Link do darmowego, 50-dniowego dostępu do artykułu (wygasa 22.06.2018): ![]()
Abstract
Smelter wastelands containing high amounts of zinc, lead, cadmium, and arsenic constitute a major problem worldwide. Serious hazards for human health and ecosystem functioning are related to a lack of vegetative cover, causing fugitive dust fluxes, runoff and leaching of metals, affecting post-industrial ecosystems, often in heavily populated areas. Previous studies demonstrated the short term effectiveness of assisted phytostabilisation of zinc and lead smelter slags, using biosolids and liming. However, a long term persistence of plant communities introduced for remediation and risk reduction has not been adequately evaluated.
The work was aimed at characterising trace element solubility, plant and microbial communities of the top layer of the reclaimed zinc and lead smelter waste heaps in Piekary Slaskie, Poland, 20 years after the treatment and revegetation. The surface layer of the waste heaps treated with various rates of biosolids and the by-product lime was sampled for measuring chemical and biochemical parameters, which are indicative for metals bioavailability as well as for microorganisms activity. Microbial processes were characterised by enzyme activities, abundance of specific groups of microorganisms and identification of N fixing bacteria. Plant communities of the area were characterised by a percent coverage of the surface and by a composition of plant species and plant diversity. The study provides a strong evidence that the implemented remediation approach enables a sustainable functioning of the ecosystem established on the toxic waste heaps. Enzyme activities and the count of various groups of microorganisms were the highest in areas treated with both biosolids and lime, regardless their rates. A high plant species diversity and microbial activities are sustainable after almost two decades from the treatment, which is indicative of a strong resistance of the established ecosystem to a metal stress and a poor physical quality of the anthropogenic soil formed by the treatment.

Long-term impact of sewage sludge, digestate and mineral fertilizers on plant yield and soil biological activity; Siebielec S., Siebielec G., Lipski D., 2018, 187: 372–379, Journal of Cleaner Production, https://doi.org/10.1016/j.jclepro.2018.03.245
Abstract

Fungal Genetics and Functional Diversity of Microbial Communities in the Soil under Long-Term Monoculture of Maize Using Different Cultivation Techniques; Gałązka A., Grządziel J.; Frontiers in Microbiology, 2018, 9, 76, doi: 10.3389/fmicb.2018.00076

Abstract

Assessment of the glomalins content in the soil under winter wheat in different crop production systems, Gałązka A., Gawryjołek K., Gajda A., Furtak K., Księżniak A., Jończyk K., Plant, Soil and Environment, 2018, 64: 32-3
Link do publikacji: Plant, Soil and Environment
Abstrakt:

Impact of abiotic factors on development of the community of arbuscular mycorrhizal fungi in the soil: a Review; Jamiołkowska A., Księżniak A., Gałązka A., Hetman B., Kopacki M., Skwaryło- Bednarz B.; International Agrophysics, 2018, 32, 1, 133-140,10.1515/intag-2016-0090
Link do publikacji: http://www.international-agrophysics.org/en/artykul/1084
Abstract:

Effects of conventional and reduced tillage of soil wellness. Gajda A.M., Czyż E.A, Dexter A.R, Furtak K.M., Grządziel J., Stanek-Tarkowska J.; International Agrophysics, 2018, 32, 81-91, doi: 10.1515/intag-2016-0089;
Link do publikacji: http://www.international-agrophysics.org/en/artykul/1079
Abstrakt
The effects of different tillage systems on the properties and microbial diversity of an agricultural soil was investigated. In doing so, soil physical, chemical and biological properties were analysed in 2013-2015, on a long-term field experiment on a loamy sand at the IUNG-PIB Experimental Station in Grabów, Poland. Winter wheat was grown under two tillage treatments: conventional tillage using a mouldboard plough and traditional soil tillage equipment, and reduced tillage based on soil crushing-loosening equipment and a rigid-tine cultivator. Chopped wheat straw was used as a mulch on both treatments. Reduced tillage resulted in increased water content throughout the whole soil profile, in comparison with conventional tillage. Under reduced tillage, the content of readily dispersible clay was also reduced, and, therefore, soil stability was increased in the toplayers, compared with conventional tillage. In addition, the beneficial effects of reduced tillage were reflected in higher soil microbial activity as measured with dehydrogenases and hydrolysis of fluorescein diacetate, compared with conventional tillage. Moreover, the polimerase chain reaction – denaturing gradient gel electrophoresis analysis showed that soil under reduced tillage had greater diversity of microbial communities, compared with conventionally-tilled soil. Finally, reduced tillage increased organic matter content, stability in water and microbial diversity in the top layer of the soil.
Kontynuując korzystanie z witryny, wyrażasz zgodę na używanie plików cookie. więcej informacji
The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.